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Introduction

• A relativistic electron beam moving on a circular orbit in free space

can radiate coherently at the wavelengths that exceed the length of

the bunch.

• Coherent radiation at shorter wavelengths can result from density

fluctuations in the beam with characteristic length much shorter

than the bunch length.

• If the radiation reaction force drives the growth of the initial

fluctuation, one can expect an instability which leads to

micro-bunching of the beam and increased coherent radiation at

short wavelengths.
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Mechanism of the instability

Let us assume a small initial sinusoidal density perturbation on the

beam, δn = ε sin kz

• Due to the CSR wake, δn induces energy modulation in the beam

δE1

• Momentum compaction of the ring translates δE1 into δn. Under

certain conditions, the final δn is greater than the initial one.

• Energy spread introduces Landau damping and stabilizes short

wavelengths.

• Wall shielding of CSR and finite length of the bunch limits the

instability at large wavelength.

• Transverse beam emittance mixes the particle over the wavelength

and may have a stabilizing effect on the instability
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Theory (Heifets, Stupakov, 2002)

Since we are interested in the wavelength much shorter than the bunch

length, consider a coasting beam moving in a circular orbit of radius R

in free space.

ρ(δ, z, s) — longitudinal distribution function, dN = dz
∫

ρ(δ, z, s)dδ.

Vlasov equation (neglect damping and quantum diffusion)

∂ρ

∂s
− ηδ

∂ρ

∂z

− r0
γ

∂ρ

∂δ

∫ ∞

−∞

dz′dδ′W (z − z′)ρ(δ′, z′, s) = 0

δ = ∆E/E

s = ct

η – slip factor

r0 – classical electron radius

W (z − z′) – wake function (per unit length of the path).

4



CSR wake

A relativistic particle moving in vacuum in a circular orbit of radius R,

in steady state, generates a CSR wake (per unit length of path)

(Murphy et al., 1995; Derbenev et al. 1995)

z

w

~R/γ3

−0.04γ  /R24

W (z) ≈ −E‖
q

= − 2

34/3R1/3z4/3

This wake neglects transient

effects at the entrance to and

exit from the magnet. If is

valid if (λ – wavelength)

lmagnet > λ1/3R2/3

• For R ≈ 30 m and γ ≈ 104, R/γ3 = 3 · 10−11 m—negligibly small

• Shielding effects become important at the distance z & R1/2

a3/2
, a –

gap between walls
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Neglect the shielding effect, and assume a steady-state wake

W (z) =
2

(3R2)1/3

∂

∂z

1

z1/3
for z > 0,

and W (z) = 0 for z ≤ 0. The radiation wakefield is localized in front of

the moving charge.

Impedance

Z(k) =
1

c

∫ ∞

0

dzW (z)e−ikz = iA
k1/3

cR2/3
.

The complex factor A is

A = 3−1/3Γ

(

2

3

)

(√
3i− 1

)

= 1.63i− 0.94

For a perturbation ρ1 ∝ e−iωs/c+ikz, the dispersion relation gives

dependence ω vs k

1 = − ir0c
2Z(k)

γ

∫

dδ (dρ0/dδ)

ω + ckηδ

This is a standard formula for a coasting beam instability.
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If bends do not fill the whole ring, we introduce a weighting factor in Z

Z → Z
R

〈R〉

where 〈R〉 = C/2π.

For a Gaussian distribution function, ρ0 = nb(2π)
−1/2 exp(−δ2/2δ2

0)

(kR)2/3

Λ
= − A√

2π

∫ ∞

−∞

dp p e−p2/2

Ω+ p

where Ω = ω/ckηδ0,

Λ =
nbr0
|η|γδ2

0

R

〈R〉
Note

nbr0 =
I

17 kA
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ω versus k for positive η
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The beam is unstable for such

wavelength that

kR < 2.0Λ3/2.

Λ ∝ I

δ2
0

The maximum growth rate is reached at kR = 0.68Λ3/2 and is equal to

Imωmax = 0.43Λ3/2cηδ0/R.
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ω versus k for negative η
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The beam is unstable for such

wavelength that

kR < 0.92Λ3/2.

The maximum growth rate is reached at kR = 0.32Λ3/2 and is equal to

Imωmax = 0.16Λ3/2c|η|δ0/R.
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Limit of the cold beam, k ¿ Λ3/2/R,

Imω = 1.2c

(

r0k
4/3nbη

γR2/3

)1/2

No energy spread δ0 in this formula.

We neglected the synchrotron damping γd due to incoherent radiation.

The effective growth rate of the instability ∼ Imω − γd (see details in

Heifets and Stupakov, SLAC-PUB-8803).
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If we want to see the instability ...

1. Bunched Beam. For a bunched beam of length σz the

coasting-beam approximation can be applied if kσz À 1,

σz & 0.5
R

Λ3/2

2. Shielding. Finite aperture a of the beam pipe — CSR is

suppressed due to the shielding effect at

kR .

(

πR

2a

)3/2

Hence the instability can only develop for such values of k that

2.0Λ3/2 > kR & (πR/2a)3/2.

R

a
. Λ.
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Numerical Estimates for LER, ALS and VUV rings

Accelerator LER PEP-II ALS VUV NSLS

E (GeV) 3.1 1.5 0.81

η 1.31 · 10−3 1.41 · 10−3 2.35 · 10−2

δ0 8.1 · 10−4 7.1 · 10−4 5.0 · 10−4

〈R〉 (m) 350 31.3 8.11

R (m) 13.7 4 1.91

a (cm) 2 1 2.1

Ib (mA) 2 7.6 (30) 400

σz (cm) 1 0.7 4.7

Λ 7 306 (1.2 · 103) 250

R/a 550 400 90

R/2Λ3/2 (cm) 1.0 0.037(4.7 · 10−5) 0.025
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Discussion—formation length and retardation

We neglected retardation in the Vlasov equation. This is valid if the

wake formation time is much smaller than the inverse growth rate of

the instability:

tform ∼
R

c

1

(kR)1/3
¿ 1

Imω
.

Using for the characteristic wavenumber and frequency of the

instability kR ∼ Λ3/2 and Imω ∼ Λ3/2c|η|δ0/R yields the condition of

applicability of the theory
n0r0
δ0γ

¿ 1.
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Discussion—finite transverse size of the bunch

The CSR wake is not applicable for very short wavelength. This wake

was derived for a bunch that is infinitely thin in the transverse

direction and assumes that all particles in the cross section of the

bunch radiate coherently. However, the transverse coherence length

l⊥ ∼ k−2/3R1/3 decreases with the wavelength and for very large values

of k becomes smaller than the transverse dimension of the beam.
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Nonlinear Regime

Not much can be done analytically. See paper by M. Venturini and R.

Warnock, SLAC-PUB-9505.
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Shielding and discrete modes

Near the shielding threshold, λ ∼ a3/2/R1/2, the vacuum CSR

impedance is not applicable. In the model of a toroidal waveguide with

perfectly conduction walls and circular orbit, there are discrete

synchronous modes that interact with the beam (B. Warnock&P.

Morton, K.-Y. Ng, et al.). We did a new analysis of the shielded CSR

impedance (G. Stupakov and I. Kotelnikov, SLAC-PUB-9553), which

deals with arbitrary shape of the toroid cross section.
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Each mode is characterized by the loss factor (per unit length)

w(z) = 2κ cos
(ω

c
z
)

Fig. below—loss factors for a round toroid.
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For R = 4 m and a = 1

cm, the unit of frequency

(ω/2π) on the plot is 95

GHz, the unit of loss fac-

tor is 90 V/pC/m.
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CSR instability should be treated as interaction with single modes, not

a continuous spectrum (talk by S. Heifets). The theory is similar to 1D

SASE FEL instability (the equations in scaled variables are identical)

Γ ∼ I1/3
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The promise of this theory

is a possibility of quasi-

continuous radiation (no

bursts).
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CSR instability in wiggler

Sometime rings have wigglers. Example: NLC damping ring—B = 2.15

T, λw = 27 cm, Lw = 46 m, C = 300 m. How does wiggler effect the

CSR instability? We need the CSR wake for the undulator.

Wiggler wake potential in the limit K2/2À 1.
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Talk by J. Wu.
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Conclusion

1. The theory of CSR instability in the ring is under rapid

development. Areas of research include:

• Single mode CSR instability—both linear and nonlinear regimes

• Instability in a ring with wigglers

• Shielding effect, arbitrary cross section of the vacuum chamber

• Computer simulation—finite bunch length, shielding, nonlinear

effects, radiation damping and diffusion

2. I see the challenge in searching for regimes where the beam is

unstable, but the instability saturates into a steady state with a large

CSR radiation.
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